杭州德博领育软件

大数据Spark工程师的进阶之路

53 2021-08-12 08:51:47

学习笔记

随着互联网、物联网、5G、人工智能、云计算等技术的不断发展,越来越多的数据在互联网上产生,对互联网运营的也要求开始精细化,因此大数据、数据分析、数字营销开始变成互联网企业的重点。


Spark初诞生于美国加州大学伯克利分校(UC Berkeley)的AMP实验室,是一个可应用于大规模数据处理的、通用引擎。

2013年,Spark加入Apache孵化器项目后,开始获得迅猛的发展,如今已成为Apache软件基金会重要的三大分布式计算系统开源项目之一(即Hadoop、Spark、Storm)。

Spark初的设计目标是使数据分析更快——不仅运行速度快,也要能、容易地编写程序。

为了使程序运行更快,Spark提供了内存计算,减少了迭代计算时的IO开销;而为了使编写程序更为容易,Spark使用简练、优雅的Scala语言编写,基于Scala提供了交互式的编程体验。

虽然,Hadoop已成为大数据的事实标准,但其MapReduce分布式计算模型仍存在诸多缺陷,而Spark不仅具备Hadoop MapReduce所具有的优点,且解决了Hadoop MapReduce的缺陷。Spark正以其结构一体化、功能多元化的优势逐渐成为当今大数据领域热门的大数据计算平台。

据小编了解企业在面试Spark工程师的时候,至少需要达到1~3年工作经验的,那我们的课程可以为你带来什么呢?如果你有一定的基础,但是苦于没有找到合适的进阶课程,不妨学习一下,我们针对有Scala基础的同学们,精心准备的进阶课程。



本课程将从Spark基础、原理到优化,从浅到深,层层深入递进,讲解Spark体系。原理分析和性能优化经验都是对于Spark的重要加分项,在实际工作中也能起到非常重要作用。通过一个教育平台大数据分析系统来进行实战演练,将所学即所用,在真正的需求分析实现过程中完成对Spark体系的掌控。

我们课程的重点内容

Apache Spark基础及架构

认识Spark和Spark技术栈

Spark架构设计

Spark运行环境

Spark核心数据结构—RDD

RDD的数据变换及操作

Apache Spark
分布式计算原理

RDD依赖

DAG工作原理

Spark Shuffle原理

RDD优化

装载CSV数据源

装载JSON数据源

使用IDEA开发Spark应用程序

Spark SQL精华及与Hive的集成

Spark SQL原理

Spark SQL优化器 – Catalyst Optimizer

Dataset与DataFrame的操作

Spark SQL操作外部数据源

Spark函数应用与开发

Spark-SQL Shell

Spark性能优化

教育平台大数据分析系统

日志数据清洗

用户留存分析

活跃用户分析

活跃用户地域信息分析

用户浏览深度分析



文中图片素材来源网络,如有侵权请联系删除
来源:杭州德博领育软件
相关标签: IT认证培训 杭州IT认证培训

申请免费试听

只要一个电话

我们为您免费回电

立即申请
刷新
图形验证
关闭
>>
拖动左边滑块完成上方拼图